LAPORAN TUGAS AKHIR KARYA ILMIAH TERAPAN

OPTIMALISASI TURBIN ANGIN SAVONIUS VERTIKAL BERBASIS MPPT ALGORITMA PERTURB AND OBSERVE (P&O) SEBAGAI SUPLAI SISTEM PEMANAS AIR DI KAPAL

ARYO DWI PINANGGOLA NIT. 09 21 002 111

disusun sebagai salah satu syarat menyelesaikan Program Pendidikan Sarjana Terapan

POLITEKNIK PELAYARAN SURABAYA
PROGRAM STUDI SARJANA TERAPAN
TEKNOLOGI REKAYASA KELISTRIKAN KAPAL
TAHUN 2025

LAPORAN TUGAS AKHIR KARYA ILMIAH TERAPAN

OPTIMALISASI TURBIN ANGIN SAVONIUS VERTIKAL BERBASIS MPPT ALGORITMA PERTURB AND OBSERVE (P&O) SEBAGAI SUPLAI SISTEM PEMANAS AIR DI KAPAL

ARYO DWI PINANGGOLA

NIT. 09 21 002 111

disusun sebagai salah satu syarat Menyelesaikan Program Pendidikan Sarjana Terapan

POLITEKNIK PELAYARAN SURABAYA
PROGRAM STUDI SARJANA TERAPAN
TEKNOLOGI REKAYASA KELISTRIKAN KAPAL
TAHUN 2025

PERNYATAAN KEASLIAN

Yang bertanda tangan dibawah ini:

Nama

: ARYO DWI PINANGGOLA

Nomor Induk Taruna : 09.21.002.1.11

Program Studi

: Sarjana Terapan Teknologi Rekayasa Kelistrikan Kapal

Menyatakan bahwa KIT yang saya tulis dengan judul:

"OPTIMALISASI TURBIN ANGIN SAVONIUS VERTIKAL BERBASIS MPPT ALGORITMA PERTURB AND OBSERVE (P&O) SEBAGAI SUPLAI SISTEM PEMANAS AIR DI KAPAL"

Merupakan karya asli seluruh ide yang ada dalam KIT tersebut, kecuali tema dan yang saya nyatakan sebagai kutipan, merupakan ide saya sendiri. Jika pernyataan diatas terbukti tidak benar, maka saya sendiri menerima sanksi yang ditetapkan oleh Politeknik Pelayaran Surabaya.

SURABAYA, 30 JULI 2025

ARYO DWI PINANGGOLA

Dipindai dengan CS CamScanner

PERSETUJUAN UJI KELAYAKAN PROPOSAL TUGAS AKHIR

Judul

: OPTIMALISASI TURBIN ANGIN SAVONIUS

VERTIKAL BERBASIS MPPT ALGORITMA PERTURB AND OBSERVE (P&O) SEBAGAI SUPLAI SISTEM

PEMANAS AIR DI KAPAL

Program Studi

: Sarjana Terapan Teknologi Rekayasa Kelistrikan Kapal

Nama

: ARYO DWI PINANGGOLA

NIT

: 09.21.002.1.11

Jenis Tugas Akhir : Karya Ilmiah Terapan

Dengan ini dinyatakan bahwa telah memenuhi syarat dan disetujui untuk dilaksanakan Seminar Proposal Tugas Akhir

Surabaya, 04 Desember 2024

Menyetujui,

Dosen Pembimbing I

Dosen Pembimbing II

(HENNA NURDIÁNSARI, S.T., M.T., M.Sc)

NIP. 198512112009122003

(MAULIDIAH RAHMAWATI, S.Si, M.Sc)

NIP. 197702282006042001

Mengetahui, Ketua Program Studi Sarjana Terapan Teknologi Rekayasa Kelistrikan Kapal

(AKHMAD KASAN GUPRON, M.Pd)

NIP. 198005172005021003

PERSETUJUAN SEMINAR HASIL TUGAS AKHIR

Judul

: OPTIMALISASI TURBIN ANGIN SAVONIUS

VERTIKAL BERBASIS MPPT ALGORITMA PERTURB AND OBSERVE (P&O) SEBAGAI SUPLAI SISTEM

PEMANAS AIR DI KAPAL

Program Studi

: Sarjana Terapan Teknologi Rekayasa Kelistrikan Kapal

Nama

: ARYO DWI PINANGGOLA

NIT

: 09.21.002.1.11

Jenis Tugas Akhir : Karya Ilmiah Terapan

Dengan ini dinyatakan bahwa telah memenuhi syarat dan disetujui untuk dilaksanakan Seminar Hasil Tugas Akhir

Surabaya, 15 juli 2025

Menyetujui,

Dosen Pembimbing I

Dosen Pembimbing II

(HENNA NURDIANSARI, S.T., M.T., M.Sc)

NIP. 198512112009122003

(MAULIDIA)

Mengetahui, Ketua Program Studi

Sarjana Terapan Teknologi Rekayasa Kelistrikan Kapal

(DIRHAMSYAH, S.E, M.Pd)

NIP. 197504302002121002

PENGESAHAN PROPOSAL TUGAS AKHIR KARYA ILMIAH TERAPAN

OPTIMALISASI TURBIN ANGIN SAVONIUS VERTIKAL BERBASIS MPPT ALGORITMA PERTURB AND OBSERVE (P&O) SEBAGAI SUPLAI SISTEM PEMANAS AIR DI KAPAL

Disusun oleh:

ARYO DWI PINANGGOLA

NIT. 09.21.018.2.03

Telah dipertahankan di depan Tim Penguji Hasil Tugas Akhir Politeknik Pelayaran Surabaya

Surabaya, 03 Januari 2025

Mengesahkan,

Penguji I

NIP. 197707132023211004

Penguji II

(ABDI SENO, M.Si.) NIP. 197104211999031002 Penguji III

(HENNA NURIJIANSARI, ST., M.T., M.Sc.) NIP. 198512112009122003

Mengetahui,

Ketua Program Studi

Sarjana Terapan Teknologi Rekayasa Kelistrikan Kapal

(<u>DIRHAMSXAH, S.E, M.Pd)</u> NIP. 197504302002121002

PENGESAHAN LAPORAN TUGAS AKHIR KARYA ILMIAH TERAPAN

OPTIMALISASI TURBIN ANGIN SAVONIUS VERTIKAL BERBASIS MPPT ALGORITMA PERTURB AND OBSERVE (P&O) SEBAGAI SUPLAI SISTEM PEMANAS AIR DI KAPAL

Disusun oleh:

ARYO DWI PINANGGOLA

NIT. 09.21.018.2.03

Telah dipertahankan di depan Tim Penguji Hasil Tugas Akhir Politeknik Pelayaran Surabaya

Surabaya, 29 Juli 2025

Mengesahkan,

Penguji II

Penguji I

NIP. 197707132023211004

(ABDI SENO, M.Si.) NIP. 1971042 1999031002 (HENNA NURDIANSARI, ST., M.T., M.Sc.) NIP. 198512112009122003

Penguji,

Mengetahui,

Ketua Program Studi

Sarjana Terapan Teknologi Rekayasa Kelistrikan Kapal

(<u>DIR**HAMSVAH!** S.E. M.Pd)</u> NIP. 197504302002121002

ABSTRAK

ARYO DWI PINANGGOLA, "Optimalisasi Turbin Angin Savonius Vertikal Berbasis Mppt Algoritma *Perturb And Observe* (P&O) Sebagai Suplai Sistem Pemanas Air Di Kapal". Dibimbing *oleh* Henna Nurdiansari, S.T., M.T., M.Sc. dan Maulidiah Rahmawati, S.Si, M.Sc.

Indonesia sebagai negara kepulauan memiliki potensi besar dalam pemanfaatan energi terbarukan, khususnya energi angin di wilayah perairan dengan kecepatan angin rendah (3-6 m/s). Penelitian ini bertujuan untuk merancang dan menguji sistem turbin angin Savonius vertikal berbasis MPPT algoritma Perturb and Observe (P&O) sebagai suplai energi pemanas air di kapal. Metode penelitian yang digunakan adalah Research and Development (R&D), dengan integrasi komponen seperti generator DC, penyearah gelombang penuh, sensor INA219, sensor anemometer cup, mikrokontroler ESP32, serta sistem monitoring menggunakan Google Spreadsheet dan LCD 20x4. Pengujian dilakukan dalam dua kondisi, yaitu tanpa MPPT dan menggunakan MPPT. Hasil menunjukkan bahwa MPPT mampu meningkatkan daya hingga 272.64% dan menjaga kestabilan tegangan meskipun terjadi fluktasi kecepatan angin. Namun, daya rata-rata 2,605 Watt belum mencukupi untuk memenuhi kebutuhan sistem pemanas air dalam waktu singkat. Untuk mengisi baterai 12V 50aH, dibutuhkan waktu hingga 9,6 hari. Sistem ini tetap memiliki potensi sebagai Solusi energi alternatif yang ramah lingkungan untuk aplikasi kelistrikan di kapal.

Kata Kunci : Turbin angin Savonius, MPPT, P&O, ESP32, Pemanas air kapal, Energi terbarukan.

ABSTRACT

ARYO DWI PINANGGOLA, "Optimization of Vertical Savonius Wind Turbine Based on MPPT Perturb and Observe (P&O) Algorithm as a Power Supply for Ship Water Heating System." Supervised by Henna Nurdiansari, S.T., M.T., M.Sc. and Maulidiah Rahmawati, S.Si, M.Sc.

As an archipelagic country, Indonesia has significant potential for the utilization of renewable energy, especially wind energy in maritime areas with low wind speeds (3–6 m/s). This study aims to design and test a vertical Savonius wind turbine system equipped with a Perturb and Observe (P&O) MPPT algorithm as a power source for shipboard water heating systems. The research method used is Research and Development (R&D), integrating components such as a DC generator, full-wave bridge rectifier, INA219 current sensor, anemometer cup sensor, ESP32 microcontroller, and a monitoring system using Google Spreadsheet and a 20x4 LCD. The system was tested under two conditions: without MPPT and with MPPT. The results showed that the MPPT implementation increased power output by up to 272.64% and maintained voltage stability despite wind speed fluctuations. However, the average power output of 2,605Watt was not sufficient to meet water heating demands in a short period. Charging a 12V 50Ah battery would require up to 9,6 continuous days. Despite this limitation, the system demonstrates strong potential as an environmentally friendly alternative energy solution for electrical applications on ships.

Keywords: Savonius wind turbine, MPPT, P&O, ESP32, ship water heater, renewable energy.

KATA PENGANTAR

Segala puji syukur kepada Tuhan Yang Maha Esa atas segala limpah rahmat, kasih karunia dan berkat yang diberikan, sehingga penulis dapat menyelesaikan penelitian tugas akhir dengan judul "OPTIMALISASI TURBIN ANGIN SAVONIUS VERTIKAL BERBASIS MPPT ALGORITMA PERTURB AND OOBSERVE (P&O) SEBAGAI SUPLAI SISTEM PEMANAS AIR DI KAPAL". Penelitian tugas akhir ini bertujuan untuk menyelesaikan program studi Diploma-IV di Politeknik Pelayaran Surabaya.

Penulis menyampaikan terimakasih kepada semua pihak yang telah membantu serta memberikan arahan, bimbingan, petunjuk dalam segala hal yang sangat berarti dan menunjang dalam penyelesaian penelitian ini. Perkenankanlah penulis menyampaikan ucapan terimakasih kepada:

- 1. Direktur Politeknik Pelayaran Surabaya beserta jajarannya yang telah menyediakan fasilitas dan pelayanan, sehingga saya dapat menyelesaikan penelitian ini.
- 2. Dosen pembimbing satu Henna Nurdiansari, S.T., M.T., M.Sc. yang penuh ketekunan dan kesabaran membimbing saya dalam penulisan proposal ini.
- 3. Dosen pembimbing dua Maulidiah Rahmawati, S.Si, M.Sc yang penuh ketekunan dan kesabaran membimbing saya dalam penulisan proposal ini.
- 4. Kedua orang tua Selamet Dulharis & Suhartini saya cintai yang selalu memberikan dukungan baik doa, moral, dan material.
- 5. Kakak kandung Ifa Wirda Sri Bintani & Jony Prastowo Widodo atas dukungan moral, semangat, serta doa yang diberikan selama proses penyusunan skripsi ini.
- 6. Ucapan terimakasih saya sampaikan kepada Nourananda Maulidia Aprianti, yang telah menjadi sumber semangat, menemani proses panjang ini dengan kesabaran dan motivasi yang tak henti.
- 7. Rekan-rekan taruna yang telah memberikan dorongan dan semangat sehingga penulisan karya ilmiah terapan ini dapat terselesaikan.
- 8. Tak luput orang tersayang disekitar saya yang selalu membantu dan memberi dukungan dalam pengerjaan skripsi ini.

Saya sadar bahwa dalam penulisan Karya Ilmiah Terapan ini masih terdapat banyak kekurangan. Kekurangan tersebut tentunya dapat dijadikan peluang untuk meningkatkan penulisan selanjutnya.

Surabaya, 5 Desember 2024

Aryo Dwi Pinanggola

DAFTAR ISI

HALA	MAN JUDUL	i
PERNY	ATAAN KEASLIAN	. ii
UJI KE	CLAYAKAN	iii
PERSE	TUJUAN SEMINAR HASIL	iv
PENGE	ESAHAN SEMINAR PROPOSAL	. v
PENGE	ESAHAN SEMINAR HASIL	vi
ABSTR	2AK	vii
ABSTR	ACT	/iii
KATA I	PENGANTAR	ix
DAFTA	AR ISI	. X
DAFTA	AR TABEL	xii
DAFTA	AR GAMBAR	kiii
BAB I	PENDAHULUAN	. 1
	A. Latar Belakang	. 1
	B. Rumusan Masalah	. 3
	C. Batasan Masalah	. 4
	D. Tujuan Penelitian	. 5
	E. Manfaat Penelitian	. 5
BAB II	TINJAUAN PUSTAKA	. 7
	A. Review Penelitian Sebelumnya	. 7
	B. Landasan Teori	. 8
BAB II	I METODE PENELITIAN	20
	A. Perancangan Sistem	20

	B. Rencana Pengujian.	. 27
BAB IV	/ HASIL PENGUJIAN DAN PEMBAHASAN	. 30
	A. Pengujian Statis	. 30
	B. Pengujian Dinamis	. 36
	C. Pengujian Terintegrasi	40
	D. Analisis Data	41
BAB V	PENUTUP	. 46
	A. Simpulan	46
	B. Saran	. 47
DAFTA	AR PUSTAKA	48

DAFTAR TABEL

Tabel 2. 1 Review Penelitian Sebelumnya	7
Tabel 3. 1 Pengujian Statis	27
Tabel 3. 2 Pengujian Tanpa MPPT	28
Tabel 3. 3 Pengujian Menggunakan MPPT	29
Tabel 3. 4 Pengujian Charger Baterai	29
Tabel 4. 1 Pengujian Generator DC 12V	31
Tabel 4. 2 Pengujian Anemometer Ditampilkan Pada LCD	32
Tabel 4. 3 Pengujian Tanpa MPPT	37
Tabel 4. 4 Pengujian Menggunakan MPPT	38
Tabel 4. 5 Pengujian Charger Baterai	39
Tabel 4. 6 Penguijan Terintegrasi	40

DAFTAR GAMBAR

Gambar 2. 1 Turbin Angin Savonius Double Blade	11
Gambar 2. 2 Generator DC	
Gambar 2. 3 Full-Wave Bridge Rectifier	
Gambar 2. 4 Sensor INA219	13
Gambar 2. 5 MPPT	
Gambar 2. 6 Baterai Lithium-ion	15
Gambar 2. 7 Sensor Anemometer Cup	15
Gambar 2. 8 Step Down DC LM2596	
Gambar 2. 9 ESP32	
Gambar 2. 10 Konverter TTL to RS-485	18
Gambar 2. 11 Google SpreadSheet	18
Gambar 2. 12 LCD 20x4	
Gambar 3. 1 Blok Diagram Capstone Design.	22
Gambar 3. 2 Blok Diagram Turbin Angin Savonius Berbasis MPPT	23
Gambar 3. 3 Flowchart	24
Gambar 3. 4 Wiring Diagram	25
Gambar 3. 5 Desain	
Gambar 4. 1 Pengujian Tegangan Generator DC	
Gambar 4. 2 Pengujian Sensor Anemometer	31
Gambar 4. 3 Pengujian MPPT	32
Gambar 4. 4 Pengujian Baterai	33
Gambar 4. 5 Pengujian Full-Wave Bridge Rectifier	34
Gambar 4. 6 Pengujian LCD	
Gambar 4. 7 Pengujian ESP32	
Gambar 4. 8 Pengujian Konverter TTL to RS-485	36
Gambar 4. 9 Tampilan Google Spreatsheet	36
Gambar 4. 10 Grafik Pengujian Tanpa MPPT & MPPT	38

BABI

PENDAHULUAN

A. Latar Belakang

Indonesia sebagai negara kepulauan terbesar di dunia, dengan lebih dari 17.000 pulau dan garis pantai sepanjang 95.000 km (Kementrian Perhubungan, 2020), Menjadikan armada laut memainkan peranan penting dalam distribusi barang, transportasi penumpang, dan kegiatan ekonomi. Dalam operasionalnya, kapal membutuhkan sistem yang efisien dan ramah lingkungan, khususnya untuk kebutuhan domestik seperti pemanas air. Namun, pemanas air konvensional yang masih menggunakan bahan bakar fosil berdampak pada meningkatnya biaya operasional dan emisi karbon, sehingga diperlukan alternatif yang lebih berkelanjutan.

Salah satu pendekatan yang telah banyak dikembangkan untuk meningkatkan efisiensi sistem pemanas air adalah penerapan *Phase Change Material* (PCM). PCM dapat diterapkan pada berbagai jenis pemanas air, yang menggunakan berbagai kontrusksi dan material tanki penyimpanan panas. Untuk mengurangi emisi karbon dan biaya operasional, *Paraffin Wax* dan pasir silika dapat digunakan sebagai media penyimpan panas. *Paraffin Wax* adalah senyawa hidrokarbon padat hasil pemurnian minyak bumi dengan titik leleh stabil dan kapasitas panas laten tinggi, sedangkan pasir silika (SiO₂) merupakan material kristalin dengan konduktivitas termal tinggi yang berfungsi sebagai bahan aditif untuk mempercepat perpindahan panas. Penerapan PCM bermaterial *paraffin wax* dan pasir silika akan menjadi pengembangan alat

pada pengujian ini yang akan diterapkan pada sistem pemanas air, khususnya diterapkan dikapal(Sharma et al., 2009).

Beberapa penelitian sebelumnya telah mencoba menjawab tantangan pemanas air ramah lingkungan di kapal. Rega Ardian Syah (2013) merancang sistem pemanas air berbasis solar water heater dikapal penumpang, yang dinilai efisiensi tetapi sangat bergantung pada intensitas cahaya matahari. Di sisi lain, (Herlambang et al., 2020) mengkaji potensi turbin angin Savonius sebagai pembangkit listrik di wilayah laut dengan kecepatan angin rendah, dan terbukti mampu bekerja stabil dalam kondisi angin tak menentu. Untuk meningkatkan efisiensi konversi daya, Wahyudi (2021) menyarankan penggunaan algoritma MPPT Perturb and Observe, yang dapat meningkatkan efisiensi daya keluaran turbin angin secara signifikan. Penelitian-penelitian ini menjadi acuan sekaligus pembanding dalam mengembangkan sistem pemanas air alternatif berbasis energi angin pada kapal.

Namun, pendekatan-pendekatan tersebut umumnya masih bergantung pada pemanas langsung dari energi surya, yang tidak selalu tersedia secara merata di laut, terutama saat malam hari atau kondisi mendung. Oleh karena itu, dibutuhkan sistem alternatif yang mampu menghasilkan energi pemanfaatan energi angin sebagai sumber energi terbarukan, terutama di wilayah perairan Indonesia yang memiliki kecepatan angin rendah, yaitu sekitar 3–6 m/s (Herlambang et al., 2020) Salah satu teknologi yang sesuai untuk kondisi tersebut adalah turbin angin Savonius tipe vertikal, yang dirancang untuk menangkap angin dari berbagai arah dan beroperasi pada kecepatan rendah, Secara aerodinamis, Savonius adalah turbin tipe vertikal

yang memeliki bentuk blade seperti huruf "S" dan jenisnya terdiri dari 1 blade sampai 4 blade.

Untuk meningkatkan efisiensi turbin angin, diperlukan teknologi Maximum Power Point Tracking (MPPT) berbasis algoritma Perturb and Observe (P&O). Teknologi ini mampu meningkatkan efisiensi sistem hingga 20–30% dengan memastikan daya keluaran berada pada titik maksimum, dan tetap stabil (Jurnal rekayasa mesin, 2021). Dengan penerapan MPPT, daya listrik yang dihasilkan oleh turbin angin Savonius dapat dimanfaatkan secara lebih optimal.

Berdasarkan pertimbangan tersebut, penulis tertarik mengusung judul "Optimalisasi Turbin Angin Savonius Berbasis MPPT Algoritma *Perturb and Observe* (P&O) Sebagai Suplai Pemanas Air di Kapal". Judul ini dipilih sebagai bentuk kontribusi terhadap pengembangan sistem pemanas air yang lebih efisien, ramah lingkungan, dan sesuai dengan kondisi nyata di perairan Indonesia. Penelitian ini berfokus pada perancangan dan optimalisasi turbin angin sebagai pembangkit listrik untuk pemanas air, sebagai alternatif dari sistem konvensional yang bergantung pada bahan bakar fosil atau intensitas matahari.

B. Rumusan Masalah

Dari latar belakang yang telah dijelaskan di atas, maka rumusan masalah yang diangkat penulis yaitu antara lain:

1. Bagaimana merancang turbin angin Savonius vertikal yang efisien untuk menghasilkan energi listrik pada kecepatan angin rendah?

- 2. Bagaimana teknologi MPPT berbasis algoritma P&O terbukti meningkatkan efisiensi daya listrik yang dihasilkan oleh turbin angin Savonius?
- 3. Apakah daya listrik yang dihasilkan oleh turbin angin savonius yang dirancang mampu memenuhi kebutuhan energi dari sistem pemanas air di kapal yang dikembangkan oleh kelompok?

C. Batasan Masalah

- Penelitian ini fokus pada perancangan turbin angin Savonius berbasis
 MPPT algoritma P&O.
- 2. Simulasi dan analisis dilakukan berdasarkan data kecepatan angin yang relevan dengan kondisi perairan di Indonesia, yaitu antara 3-6 m/s.
- 3. Penelitian ini tidak mencakup perhitungan ekonomi yang mendetail terkait biaya atau investasi dalam implementasi sistem.
- 4. Sistem turbin angin savonius yang digunakan dalam penelitian ini merupakan hasil rancangan mandiri oleh penulis, sedangkan sistem pemanas air merupakan bagian dari proyek kelompok dan hanya digunakan sebagai acuan aplikasi beban potensial. Oleh karena itu, penelitian ini tidak mencakup desain fisik, kontruksi, maupun perhitungan detail dari sistem pemanas air.

D. Tujuan Penelitian

Tujuan dari Karya Ilmiah Terapan ini adalah sebagai berikut:

- Merancang dan mengoptimalkan turbin angin Savonius vertikal berbasis
 MPPT algoritma P&O untuk menghasilkan energi listrik pada kecepatan angin rendah.
- 2. Menguji kinerja sistem turbin angin untuk menghasilkan daya yang stabil dan efisien.
- Mengevaluasi apakah daya yang dihasilkan dapat memenuhi kebutuhan pemanas air di kapal.

E. Manfaat Penelitian

1. Manfaat Teoritis

Secara teori, penelitian ini dapat menjadi dasar pengembangan lebih lanjut dalam bidang teknologi turbin angin Savonius, serta memberikan kontribusi pada pengembangan sistem energi terbarukan yang lebih efisien dan ramah lingkungan untuk sektor maritim. Penelitian ini juga memperluas pemahaman tentang penerapan teknologi MPPT berbasis algoritma P&O dalam optimasi daya turbin angin pada kondisi angin rendah.

2. Manfaat Praktis

a. Bagi Institusi Pendidikan

Penelitian ini dapat digunakan sebagai referensi atau acuan dalam pelajaran teknologi energi terbarukan, khususnya yang berkaitan dengan penerapan turbin angin Savonius dan MPPT dengan

metode P&O di sektor maritim, serta memberikan pemahaman lebih dalam mengenai perancangan sistem energi terbarukan untuk kapal.

b. Bagi Penelitian Lebih Lanjut

Penelitian ini dapat dijadikan bahan acuan untuk penelitian lebih lanjut dalam mengembangkan sistem turbin angin yang lebih efisien dan ramah lingkungan, serta aplikasi teknologi MPPT yang lebih luas di sektor maritim. Penelitian ini juga membuka peluang untuk inovasi sistem energi terbarukan yang lebih modern dan efektif untuk kapal.

BAB II

TINJAUAN PUSTAKA

A. Review Penelitian Sebelumnya

Dalam penelitian ini, review terhadap penelitian terdahulu sangat penting untuk memahami kemajuan yang telah dicapai di bidang energi terbarukan, khususnya dalam hal tubin angin Savonius berbasis MPPT dengan metode P&O. Dengan menganalisis hasil-hasil penelitian sebelumnya, penulis dapat mengidentifikasi kesenjangan dan memperkaya kajian penelitian ini, serta menghindari duplikasi dengan penilitan yang sudah ada. Tabel 2.1 dibawah ini, disajikan ulasan mengenai penelitian terdahulu yang relevan, yang telah digunakan sebagai refrensi dalam penelitian ini.

Tabel 2. 1 Review Penelitian Sebelumnya

No	Penulis	Judul	Hasil	Perbedaan
1.	Saputro, D., Nugroho, D., & Utomo, S. B. (2019), Universitas Islam Sultan Agung.	Analisis Optimalisasi Pembangkit Listrik Tenaga Angin dengan Menggunakan MPPT	Hasil penelitian menunjukkan bahwa dengan penerapan MPPT berbasis P&O, daya maksimum yang dihasilkan oleh turbin angin adalah 112,32W, sedangkan tanpa MPPT hanya mencapai 78,24W	Penelitian sebelumnya menggunakan turbin angin konvensional atau jenis horizontal axis wind turbines (HAWT). Sedangkan pada penelitian ini berfokus pada turbin angin Savonius.
2.	Yusuf Dewantoro Herlambang , dkk. (2020), Politeknik Negri Semarang.	Model Turbin angin savonius untuk Meningkatkan Kinerja PLTB	Turbin single blade menghasilkan efisiensi terbaik 8,43% pada kecepatan angin 5m/s, sementara double blade 1:2 menghasilkan efisiensi 6,9%	Penelitian sebelumnya fokus pada merancang keefisiensiannya pada model turbin savonius single blade, double blade, sedangkan pada penelitian ini merancang turbin Savonius single blade dengan mengaplikasikan pada pemanas air di kapal.
3.	Royani, K.A.(2015), Institut Teknologi	Desain Sistem Solar Water Heater pada	Penelitian ini menunjukkan sistem solar water heater dapat menyediakan	Penelitian sebelumnya menggunakan solar water heater sebagai pemanas air sedang kan pada

No	Penulis	Judul	Hasil	Perbedaan
	Sepuluh Nopember.	kapal Penumpang	kebutuhan air hangat domestik kapal secara ekonomis dan ramah lingkungan.	penelitian ini menggunakan turbin angin yang mengconvert menggunakan generator menjadi listrik untuk memanaska air, untuk menyediakan kebutuhan air hangat domestic kapal secara menghemat biaya dan ramah lingkungan
4.	Melda Latif (2013), Universitas Andalas Padang.	Efisiensi Prototipe Turbin Angin Savonius pada Kecepatan Angin Rendah	Turbin Savonius mulai berputar pada keceptan angin 2,4 m/s. Efisiensi ratarata untuk beban Y adalah 4,8% dan untuk beban Δ adalah 14,5%	Penelitian sebelumnya menggunkan prototipe turbin Savonius berbahan pelat alumunium. Pengujian dilakukan dipantai menggunakan generator sinkron magnet permanen, dengan beban resistor 200 Ω dan LED sedangkan pada penelitian ini menerapkan pada pemanas air.

B. Landasan Teori

Menurut Ahmad Suparman, landasan teori merupakan kerangka berpikir yang menjadi dasar dalam pelaksanaan penelitian. Landasan ini mencakup berbagai teori yang relevan dengan topik yang diteliti, dan fungsi untuk memberikan dasar ilmiah serta pedoman yang jelas dalam menjalankan proses penelitian. Pada penelitian ini terdapat komponen yang harus dilengkapi dalam merancang turbin angin savonius beserta monitoringnya, komponen-komponen beserta pengertiannya yang terpapar yaitu:

1. Energi Terbarukan dan Turbin Angin

Energi terbarukan merupakan energi yang berasal dari sumber daya alam yang dapat diperbarui secara alami dalam jangka waktu yang relative singkat, seperti matahari, angin, air, dan biomassa. Pemanfaatan energi terbarukan menjadi Solusi utama dalam menghadapi krisis energi dan

dampak negatif penggunaan energi fosil. Menurut (Wicaksono et al., 2023), Pembangkit Listrik tenaga Bayu (PLTB) merupakan salah satu bentuk pemanfaatan energi terbarukan yang potensial dikembangkan di Indonesia karena memiliki potensi kecepatan angin yang cukup stabil di beberapa wilayah Indonesia.

Salah satu teknologi utama dalam sistem PLTB adalah turbin angin, yaitu perangkat yang berfungsi mengubah energi kinetic dari angin menjadi energi mekanik, yang kemudian dikonversi menjadi energi listrik melalui generator. Prinsip kerja turbin angin didasarkan pada gerakan bilah turbin yang diputar oleh hembusan angin, sehingga menghasilkan putaran rotor yang terhubung ke generator. Efektivitas sistem ini sangat dipengaruhi oleh kecepatan angin, desain bilah, serta jenis turbin yang digunakan(Wicaksono et al., 2023).

2. Jenis-Jenis Turbin Angin

Berdasarkan orientasi poros rotasinya, turbin angin secara umum diklasifikasikan menjadi dua jenis utama, yaitu *Horizontal Axis Wind Turbine* (HAWT) dan Vertical Axis Wind Turbine (VAWT).

a. Horizontal Axis Wind Turbine (HAWT)

HAWT memiliki poros rotor yang sejajar dengan arah angin. Jenis ini banyak digunakan dalam skala besar seperti ladang angin (Wind Farm) karena efisiensinya tinggi pada kecepatan angin konstan. Namun, HAWT memerlukan sistem pelacakan arah angin (Yaw System) untuk mengoptimalkan kinerjanya, serta membutuhkan area instalasi yang luas.

b. Vertical Axis Wind Turbine (VAWT)

VAWT memiliki poros rotor yang tegak lurus terhadap permukaan tanah. Turbin jenis ini tidak membutuhkan sistem pelacak arah angin, karena dapat menerima angin dari segala arah. VAWT umumnya digunakan pada Lokasi dengan kecepatan angin rendah dan ruang instalasi terbatas. Tipe-tipe VAWT yang umum meliputi:

- 1) Darrieus, berbentuk menyerupai huruf "C" dan bekerja berdasarkan gaya angkat (Lift Force).
- 2) Giromill, variasi dari Darrieus dengan bilah lurus.
- 3) Savonius, bekerja berdasarkan gaya hambat (*Drag Force*) dan cocok untuk torsi awal tinggi.

Menurut (Herlambang et al., 2020), turbin angin Savonius sangat cocok diterapkan di wilayah berkecepatan angin rendah karena desainnya sederhana dan mampu menghasilkan torsi awal yang besar, meskipun efisiensinya lebih rendah dibandingkan tipe lainnya.

3. Turbin angin Savonius Double Blade

Turbin angin Savonius *Double Blade* sebagaimana ditunjukan pada gambar 2.1 adalah jenis turbin angin dengan sumbu vertikal yang dirancang khusus untuk dapat beroperasi pada kecepatan angin rendah. Turbin ini memiliki rotor yang tersusun tegak lurus, memungkinkan konversi energi angin menjadi energi listrik secara efisien pada kondisi angin yang tidak terlalu kencang. Kelebihan utama dari turbin Savonius adalah kemampuannya untuk menangkap energi angin bahkan pada kecepatan yang lebih rendah dibandingkan dengan turbin

angin jenis lainnya(Herlambang et al., 2020)

Gambar 2. 1 Turbin Angin Savonius Double Blade Sumber: https://shorturl.at/X2nDa

4. Generator DC

Generator DC sebagaimana ditunjukkan pada gambar 2.2 adalah perangkat elektromekanis yang mengubah energi gerak (mekanik) menjadi energi listrik searah (DC) melalui prinsip induksi elektromagnetik. Generator ini terdiri dari kumparan yang berputar dalam medan magnet, di mana tegangan searah dihasilkan melalui komutator yang terhubung ke *brush*. Salah satu keunggulan utama generator DC adalah kemampuannya untuk menghasilkan tegangan pada kecepatan putaran rendah (*low RPM*), sehingga cocok digunakan dalam sistem pembangkit tenaga angin dengan turbin berputaran lambat seperti Savonius(Susanto & Perdamean Sebayang, 2018)

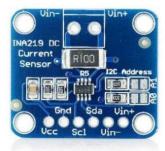
Pada penelitian ini, digunakan generator DC untuk mengakomodasi karakteristis turbin angin Savonius yang memiliki torsi besar namun kecepatan putaran rendah. Meskipun beban akhir pada sistem ini berupa pemanas air yang bekerja dengan tegangan AC, penggunaan generator DC dinilai lebih efektif karena dapat menyimpan energi terlebih dahulu ke

dalam baterai, lalu dikonversi ke AC menggunakan inverter. Hal ini juga menghindari permasalahan kestabilan frekuensi yang sering terjadi apabila generator AC digunakan langsung pada sistem dengan kecepatan putaran tidak tetap.

Gambar 2. 2 Generator DC Sumber: https://shorturl.at/yCs17

5. Full-Wave Bridge Rectifier

Full-Wave Bridge Rectifier sebagaimana ditunjukkan pada gambar 2.3. adalah konfigurasi dari empat diode penyearah yang dirangkai untuk mengonversi seluruh siklus tegangan AC menjadi DC. Konfigurasi ini memungkinkan dua diode aktif disetiap siklus, sehingga arus DC yang dihasilkan lebih stabil dan efisien. Dalam penelitian ini, Full-Wave Bridge Rectifier dimodifikasi dari empat Diode Rectifier yang disusun pada PCB. Penggunaan Bridge Rectifier ini penting pada Turbin Angin yang berfungsi untuk menjaga pada arus DC yang disalurkan pada MPPT disaat putaran Turbin Angin terbalik(Petrović & Tatović, 2025).



Gambar 2. 3 Full-Wave Bridge Rectifier

Sumber: https://shorturl.at/153ah

6. Sensor INA219

Sebagaimana Sensor INA219 ditunjukkan pada gambar 2.4. alat pengukur arus dan teganagn digital pada sisi positif, meggunakan resistor shunt dana atarmuka I²C dengan resolusi 12-bit. Sensor ini dapat mengukur arus hingga 3,2A dan tegangan hingga 26V dengan akurasu tinggi 0,5-1% serta konsumsi daya rendah(Hareendran, 2021). Dalam penelitian "Energy efficiency investigation of sun-path tracker system" (2025), empat unit INA219 digunakan secara bersamaan pada rangkaian ESP32, menunjukkan kemampuan sensor sensor ini dalam pemantauan daya secara *real-time* pada sistem energi terbarukan(Abdellatif et al., 2025).

Gambar 2. 4 Sensor INA219 Sumber: https://shorturl.at/8V0ok

7. Maximum *Power Point Tracking* (MPPT)

MPPT sebagaimana ditunjukkan pada gambar 2.5 adalah metode yang digunakan *Perturb and Observe* untuk mengoptimalkan ekstraksi daya dari Turbin angin. MPPT berfungsi untuk menemukan titik daya maksimum yang bervariasi seiring dengan perubahan Tegangan yang dihasilkan dari Turbin angin. Dengan menggunakan algoritma *Perturb and Obseve*, sistem dapat menyesuaikan operasinya untuk mencapai efisiensi maksimum, sehingga meningkatkan total daya yang dihasilkan oleh sistem Perturb dan dimonitoring oleh sistem Observe(Ananda et al., 2024).

Gambar 2. 5 MPPT

Sumber: https://shorturl.at/UVKzx

8. Baterai Lithium-ion

Baterai sebagaimana ditunjukan pada gambar 2. 6 adalah perangkat yang menyimpan energi listrik yang dihasilkan oleh Turbin angin, berfungsi untuk menyediakan pasokan listrik saat dibutuhkan. Baterai memerlukan tegangan yang cukup agar dapat terisi dengan baik, sehingga sistem MPPT diperlukan untuk menjaga agar tegangan keluaran dari Turbin angin tetap di atas batas minimum yang

diperlukan untuk pengisian(Saputro et al., 2019).

Gambar 2. 6 Baterai Lithium-ion Sumber: https://shorturl.at/aFcqt

9. Sensor Anemometer Cup

Sensor Anemometer Cup sebagaimana ditunjukkan pada gambar 2.7 alat ukur yang digunakan dalam bidang meteorologi dan energi angin. Sensor ini terdiri dari 3 cangkir kecil yang dipasang secara simetris pada poros vertikal. Yang akan berputar ketika tertiup angin. Kecepatan rotasi ini dikonversi menjadi frekuensi sinyal pulsa digital, dan digunakan untuk menghitung kecepatan angin. Sensor ini tetap popular karena menawarkan kombinasi terbaik antara akurasi, biaya rendah, ketahanan, dan ke andalan, dibandingkan dengan jenis anemometer lain seperti sonic, LIDAR, atau SODAR(Alfonso-Corcuera et al., 2022)

Gambar 2. 7 Sensor Anemometer Cup Sumber: https://shorturl.at/PI1YT

10. Step Down DC LM2596

Step-down sebagaimana ditunjukan pada gamabar 2. 6 adalah konverter DC-DC yang berfungsi untuk mengurangi tegangan dari tingkat yang lebih tinggi ke tingkat yang lebih rendah. Juga dikenal sebagai buck converter, perangkat ini mengonversi tegangan input menjadi tegangan output yang lebih sesuai dengan kebutuhan sistem, dengan efisiensi tinggi. Di dalam sistem pembangkit listrik tenaga angin, konverter step-down sangat penting untuk memastikan energi yang dihasilkan dapat dimanfaatkan secara efektif oleh komponen lain, seperti baterai dan beban .(Saputro et al., 2019)

Gambar 2. 8 *Step Down* DC LM2596 Sumber: https://llnq.com/hMQeW

11. ESP32

ESP32 sebagaimana ditunjukkan pada gambar 2.4 adalah sebuah mikrokontroler yang dikembangkan oleh Espressif Systems, yang dirancang untuk aplikasi Internet of Things (IoT). Mikrokontroler ini memiliki keunggulan berupa konektivitas Wi-Fi dan Bluetooth, serta dilengkapi dengan banyak pin GPIO, yang memungkinkan pengguna untuk menghubungkan berbagai perangkat dan sensor. Kecepatan clock

yang tinggi dan kemampuan pemrograman yang fleksibel juga menjadikannya pilihan populer untuk proyek-proyek berbasis IoT.

Dalam konteks pemantauan sistem pembangkit listrik tenaga angin, ESP32 dapat digunakan untuk mengolah dan mengirim data secara real-time, memungkinkan pemantauan yang efisien dari jarak jauh (Wicaksono et al., 2023)

Gambar 2. 9 ESP32

Sumber: https://shorturl.at/ikvXy

12. Konverter Transistor-Transistor Logic (TTL) to RS-485

Konverter TTL to RS-485 sebagaimana ditunjuukan pada gambar 2.10 yang berfungsi sebagai pengubah sinyal level logika TTL menjadi sinyal diferensial RS-485. Konversi ini dibutuhkan karena sinyal TTL hanya cocok digunakan untuk komunikasi jawak dekat, sedangkan RS-485 lebih tahan terhadap gangguan dan dapat digunakan untuk komunikasi jarak jauh. RS-485 bekerja menggunakan dua jalur sinyal secara diferensial, sehingga lebih andal dibanding sinyal TTL yang bersifat *single-ended*. Dalam perancangan sistem, konverter ini berfungsi sebagai Penghubung antara mikrokontroler dengan perangkat komunikasi RS-485,

agar data dapat dikirimkan dengan lebih stabil(Claudio Sansoè Ing Luca Bongiovanni, 2024).

Gambar 2. 10 Konverter TTL to RS-485

Sumber: https://shorturl.at/IONlo

13. Google Spreadsheet

Spreadsheet sebagaimana ditunjukan pada gambar 2. 8 merupakan aplikasi pengelolah data berbasis cloud yang dapat dimanfaatkan sebagai sistem monitoring data secara *real-time*. Dalam sistem berbasis mikrokontroler, Spreadsheet digunakan untuk menampilkan data lain secara langsng dan fleksibel. Penggunakan Google Spreadsheet sebagai media monitoring memungkinkan pengguna untuk mengakses data dari jarak jauh, serta memantau kondisi perangkat atau sistem secara terus menerus melalui jaringan internet(Zealita et al., 2025).

Gambar 2. 11 Google SpreadSheet Sumber: https://shorturl.at/9pquT

14. Liquid Crystal Display (LCD) 20x4

Liquid *Crystal Display* (LCD) 20x4 sebagaimana ditunjukkan pada gambar 2.10, adalah jenis tampilan elektronik yang dirancang untuk menampilkan informasi dalam format teks. Layar ini dapat menampilkan hingga 20 karakter dalam tiap baris, sehingga total dapat menampilkan 80 karakter dalam 4 baris sekaligus. LCD bekerja dengan memanfaatkan Cahaya yang dipancarkan atau dipantulkan, dan sering digunakan dalam berbagai aplikasi elektronik untuk menunjukkan data secara visual. Dalam sistem yang menggunakan modul MPPT, LCD berfungsi untuk menampilkan informasi penting seperti tegangan, arus, dan daya yang dihasilkan oleh Turbin angin, sehingga memudahkan pengguna dalam memantau kinerja sistem secara real-time.(Seminar Hasil Elektro S1 ITN Malang, n.d.)

Gambar 2. 12 LCD 20x4

Sumber: https://shorturl.at/7sx6s

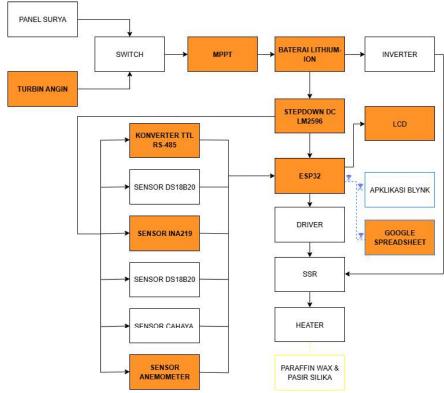
BAB III

METODE PENELITIAN

A. Perancangan Sistem

Karya tulis Ilmiah ini menggunakan metode penelitian *Research and Development* (R&D) sebagai pendekatan utama dalam penelitian skripsi ini. R&D dalam Pendidikan, adalah metode penelitian sistematis dan kreatif untuk mengembangkan produk baru atau meningkatkan produk yang sudah ada agar lebih efektif dan efisien (Mesra et al., 2023)

Metode penelitian ini diranceng dengan Langkah-langkah sistematis untuk menghasilkan temuan baru yang relevan dengan Pendidikan. (Mesra et al., 2023) dalam bab "Model R&D oleh Borg & Gall" menjelaskan bahwa terdapat sepuluh Langkah dalam metode R&D Borg & Gall yang sering digunakan, yaitu:


- Pengumpulan informasi literatur tentang turbin angin Savonius, MPPT algoritma P&O, dan sistem pemanas air dikapal.
- 2. Merancang desain turbin angin Savonius dan parameter pengujian.
- Pengembangan rancangan prototipe turbin angin Savonius berbasis MPPT algoritma P&O.
- 4. Uji lapangan awal, menguji prototipe pada kondisi laboratorium untuk mengevaluasi kinerja dasar.
- 5. Revisi produk melakukan perbaikan berdasarkan hasil uji awal.
- 6. Uji lapangan utama menguji sistem dalam kondisi simulasi nyata dengan parameter kecepatan angin 3-6m/s.

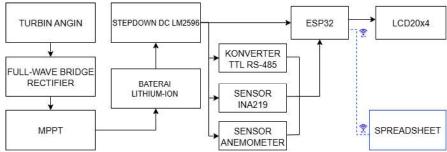
- 7. Pengendalian produk fungsional adalah prototipe diuji Kembali untuk memastikan kelayakan operasionalnya.
- 8. Uji fungsional di lapangan pengujian terhadap kelompok yang lebih besar untuk melihat efektivitas model tanpa ketelibatan langsung penelitian.
- Evaluasi dan penyempurnaan produk, menganalisis hasil pengujian dan melakukan revisi akhir.
- Diseminasi dan implementasi produk akhir diperkenalkan kepada khalayak luas melalui publikasi, pelatih, atau kegiatan lainnya.

Dari tahap-tahap penelitian yang sudah disebutkan diatas maka penelitian ini akan menghasilkan suatu produk. Produk yang dihasilkan adalah turbin angin savonius *double blade* menggunakan MPPT berbasis P&O sebagai suplai pemanas air di kapal. Berdasarkan perancangan desain dan sistem programnya yang akan di rancang yaitu:

1. Blok Diagram Capstone Design

Pada blok diagram Capstone design merupakan sebuah alur perancangan dari keseluruhan alat yang dibangung secara berkelompok, sistem pemanas air berteknologi hybrid yang akan menjadi sebuah acuan sebagai beban turbin angin savonius berbasis MPPT algoritma P&O, pada blok berwarna merah merupakan sub bagian dari perancangan Turbin angin Savonius berbasis MPPT algoritma P&O. Sebagaimana blok diagram Capstone design ditunjukkan pada gambar 3.1.

Gambar 3. 1 Blok Diagram Capstone Design.

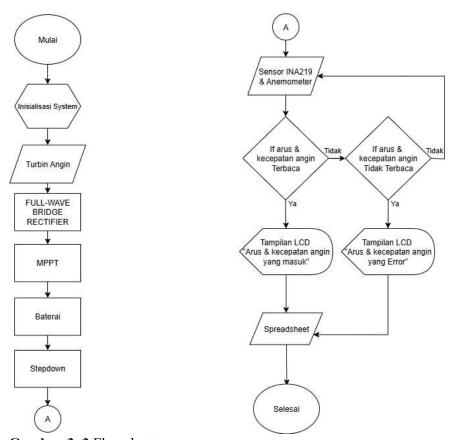

Sumber: Dokumen Pribadi

2. Blok Diagram Turbin Angin Savonius

P&O sebagaimana ditunjukkan pada gambar 3.2 menggambarkan sebuah sistem yang dirancang untuk mengelola dan memantau energi dari turbin angin dengan bantuan teknologi IoT. Proses dimulainya dari turbin angin yang menghasilkan listrik dengan memanfaatkan energi kinetik dari angin. Energi ini kemudian dihubungkan pada Full-Wave Bridge Rectifier agar pada saat putaran turbin berlawan arah kutub positif dan negatif dari turbin tidak terbalik yang akan terhubung ke MPPT. Dan daya listrik tetap terjaga dan dikelola oleh modul MPPT untuk memastikan daya yang dihasilkan berada pada titik efisiensi maksimal.

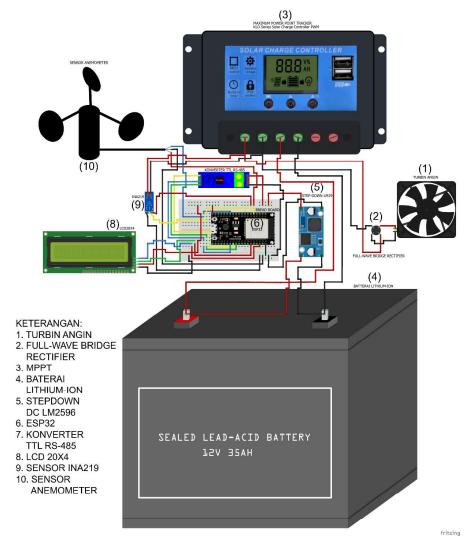
Selanjutnya, energi listrik dari MPPT diarahkan ke pengisian daya ke baterai. Baterai ini berfungsi sebagai penyimpan energi, sehingga listrik tetap tersedia meskipun turbin tidak menghasilkan daya. Untuk memastikan perangkat lain dapat menggunakan daya dari baterai, modul Stepdown DC LM2596 digunakan untuk menurunkan tegangan ke tingkat yang sesuai.

Dalam sistem ini, sensor INA219 dan sensor Anemometer berperan penting untuk memantau performa listrik dan kecepatan angin. Semua data yang dihasilkan oleh sensor dikirim ke mikrokontroler ESP32 untuk diproses. ESP32 tidak hanya mengelola data tetapi juga mengirimkannya ke Google Spreadsheet dan LCD, sehingga pengguna dapat memantau kinerja sistem secara real-time melalui smartphone. Dengan desain ini, sistem memungkinkan pengelolaan energi yang efisien dan pemantauan jarak jauh yang praktis.


Gambar 3. 2 Blok Diagram Turbin Angin Savonius Berbasis MPPT Algoritma P&O.

Sumber: Dokumen Pribadi

3. Flowchart


Flowchart sebagaimana ditunjukkan pada gambar 3. 3, pengambilan dan pengiriman data dimulai ketika alat dihidupkan. Pertama, sistem akan diinisialisasi untuk menjalankan operasi alat. sensor-sensor berfungsi

untuk mengambil data yang diperlukan, seperti INA219, Anemometer *Cup* yang dihasilkan dari tubin angin. Setelah data berhasil dikumpulkan, data tersebut akan diolah oleh mikrokontroler ESP32 yang bertugas untuk memilah dan memproses informasi. Selanjutnya, data yang telah diolah akan dikirim untuk ditampilkan pada LCD, yang menampilkan hasil pengolahan data dari sensor. Selain itu, alat ini juga berfungsi untuk mengambil data diolah secara terpisah dan langsung dikirimkan secara nirkabel ke ponsel pengguna melalui Google *Spreadsheet*.

Gambar 3. 3 Flowchart Sumber: Dokumen Pribadi

4. Wiring Diagram

Gambar 3. 4 Wiring Diagram Sumber: Dokumen Pribadi

Diagram wiring sebagaimana ditunjukkan pada gambar 3.4. menggambarkan susunan sistem monitoring berbasis mikrokontroler ESP32 yang terhubung dengan beberapa sensor dan modul. Sensor INA219 dan LCD Terhubung melalui jalur komunikasi I2C pada pin SDA (D21) dan SCL (D22). Jalur I2C ini juga dipakai oleh modul LCD 20x4 yang memungkinkan tampilan data secara lokal. Anemometer cup

disambungkan pada pin digital (GPIO34) pada ESP32. Komunikasi antara MPPT dan ESP32 difasilitasi oleh modul TTL to RS-485, yang terhubung menggunakan antarmuka UART melalu pin TX (D17) dan RX (D16). Untuk suplai daya, digunakan modul *step-down* DCLM2596 yang menurunkan tegangan dari sumber utama agar sesuai dengan kebutuhan masing-masing komponen. Dengan konfigurasi tersebut, sistem mampu memantau dan mengirim data seperti arus, tegangan, dan kecepatan angin secara real-time, selama tegangan kerja setiap modul tepat dan jalur komunikasi terpasang dengan benar.

5. Desain

Gambar 3. 5 Desain Sumber: Dokumen Pribadi

Desain alat pada gambar 3. 5. Desain turbin angin savonius yang menggunakan MPPT berbasis Algoritma P&O yang dapat dikontrol melalui aplikasi *blynk* dan dimonitor melalui Spreadsheet.

B. Rencana Pengujian.

1. Uji Statis

Pengujian ini bertujuan untuk mengevaluasi performa jangka panjang sistem dalam menjaga kestabilan daya keluaran meskipun terjadi fluktuasi kecepatan angin. Parameter yang di uji meliputi: voltage generator DC, Anemometer, batterai, LCD, Dll. Dapat dilihat rinciannya pada table 3.1.

Tabel 3. 1 Pengujian Statis

Komponen	Parameter Yang Diuji	Metode Pengujian
Generator DC	Pengukuran tegangan (Volt) yang dihasilkan	Mengukur hasil dari generator DC menggunakan multimeter digital.
Sensor anemometer	Akurasi pengukuran kecepatan angin (m/s)	Mengukur hasil dari sensor menggunakan Layar LCD.
МРРТ	Pengukuran kemampuan menstabilkan tegangan (Volt) dan Ampere (I) yang dihasilkan	Mengukur kemampuan dari MPPT yang terpapar pada layar MPPT dan membandingkan dengan hasil keluaran dari multimeter digital.
Baterai 24v	Pengukuran kapasitas daya (Watt) dan tegangan (Volt)	Pengukuran kapasitas daya dengan rumus (P=VxI), mengukur Tegangan dan ampere yang dihasilkan.
Dioda Bridge	Dioda Bridge Kemampuan pada katub	
LCD	Kemampuan	Menguji tampilan parameter pada layar dan membandingkan pada tampilan MPPT yang dihasilkan. dapat menerima sinyal
ESP 32	ESP 32 Kemampuan menerima dan mengirim sinyal	
Konverter Transistor- Transistor logic to RS- 485	Kemampuan menerima dan mengirim sinyal	Menguji sinyal yang diterima melalui ESP 32

2. Uji Dinamis.

Pengujian dinamis dilakukan untuk mengevaluasi respon sistem secara real-time terhadap perubahan kecepatan angin dan beban listrik pada turbin angin Savonius yang diintegrasikan dengan MPPT berbasis algoritma P&O dan ESP 32. Data akan dipantau dan dianalisis menggunakan aplikasi *Spreadsheet* untuk mendapatkan parameter kinerja yang relevan. Pengujian ini mencakup dua aspek utama:

a. Pengujian tanpa MPPT

Mengukur tegangan, amper, dan daya yang dihasilkan oleh turbin angin tanpa MPPT dengan konversi kecepatan angin rendah (3-6m/s) dan menentukan total daya yang dihasilkan. Sebagaimana tabel pengujian dinamsi tanpa MPPT ditunjukkan pada tabel 3.2.

Tabel 3. 2 Pengujian Tanpa MPPT

Tanpa MPPT						
NO	Time	Knot	m/s	Input	Input	Daya
110	111116	Knoi	111/3	Voltage (V)	Current (I)	(Watt)
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
	Total daya					

b. Pengujian menggunakan MPPT

mengukur tegangan, arus, kecepatan angin dan menghitung total daya yang dihasilkan dari turbin angin Sebagaimana pengujian dinamis menggunakan MPPT ditunjukkan pada tabel 3.3.

Tabel 3. 3 Pengujian Menggunakan MPPT

	Managunakan MDDT						
	Menggunakan MPPT						
NO	Time	Knot	m/s	Input Voltage(V)	Input Current(I)	Daya (Watt)	
1							
2							
3							
4							
5							
6							
7							
8							
9					·		
10							
	Total Daya						

c. Pengujian Charger Baterai

Menghitung total daya yang dihasilkan turbin angin pengujian selama 10 menit x 4 dengan mencharger baterai yang memiliki kapasitas 12V, 50aH, dan 600Wh. Ditunjukkan pengujian charger baterai pada tabel 3.4.

Tabel 3. 4 Pengujian Charger Baterai

Percobaan	Time	Daya (Watt)	Energi (Wh)			
1						
2						
3						
4						
5						
	Energi Total					